Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gynecol Oncol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497109

RESUMO

OBJECTIVE: This study aimed to evaluate the therapeutic role of lymphadenectomy in patients surgically treated for clinically early-stage epithelial ovarian cancer (EOC). METHODS: This retrospective, multicenter study included patients with clinically early-stage EOC based on preoperative abdominal-pelvic computed tomography or magnetic resonance imaging findings between 2007 and 2021. Oncologic outcomes and perioperative complications were compared between the lymphadenectomy and non-lymphadenectomy groups. Independent prognostic factors were determined using Cox regression analysis. Disease-free survival (DFS) was the primary outcome. Overall survival (OS) and perioperative outcomes were the secondary outcomes. RESULTS: In total, 586 patients (lymphadenectomy group, n=453 [77.3%]; non-lymphadenectomy groups, n=133 [22.7%]) were eligible. After surgical staging, upstaging was identified based on the presence of lymph node metastasis in 14 (3.1%) of 453 patients. No significant difference was found in the 5-year DFS (88.9% vs. 83.4%, p=0.203) and 5-year OS (97.2% vs. 97.7%, p=0.895) between the two groups. Using multivariable analysis, lymphadenectomy was not significantly associated with DFS or OS. However, using subgroup analysis, the lymphadenectomy group with serous histology had higher 5-year DFS rates than did the non-lymphadenectomy group (86.5% vs. 74.4%, p=0.048; adjusted hazard ratio=0.281; 95% confidence interval=0.107-0.735; p=0.010). The lymphadenectomy group had longer operating time (p<0.001), higher estimated blood loss (p<0.001), and higher perioperative complication rate (p=0.004) than did the non-lymphadenectomy group. CONCLUSION: In patients with clinically early-stage EOC with serous histology, lymphadenectomy was associated with survival benefits. Considering its potential harm, lymphadenectomy should be performed according to histologic subtype and subsequent chemotherapy in patients with clinically early-stage EOC. TRIAL REGISTRATION: Clinical Research Information Service Identifier: KCT0007309.

2.
J Phys Chem C Nanomater Interfaces ; 128(5): 2062-2069, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352853

RESUMO

Soft lattices of metal halide perovskite (MHP) nanocrystals (NCs) are considered responsible for many of their optical properties associated with excitons, which are often distinct from other semiconductor NCs. Earlier studies of MHP NCs upon compression revealed how structural changes and the resulting changes in the optical properties such as the bandgap can be induced at relatively low pressures. However, the pressure response of the exciton transition itself in MHP NCs remains relatively poorly understood due to limitations inherent to studying weakly or nonconfined NCs in which exciton absorption peaks are not well-separated from the continuum interband transition. Here, we investigated the pressure response of the absorbing and emitting transitions of excitons using strongly quantum-confined CsPbBr3 quantum dots (QDs) and nanoplatelets (NPLs), which both exhibit well-defined exciton absorption peaks. Notably, the reversible vanishing and recovery of the exciton absorption accompanied by reversible quenching and recovery of the emission were observed in both QDs and NPLs, resulting from the reversible pressure modulation of the exciton oscillator strength. Furthermore, CsPbBr3 NPLs exhibited irreversible pressure-induced creation of trap states at low pressures (∼0.1 GPa) responsible for trapped exciton emission that developed on the time scale of ∼10 min, while the reversible pressure response of the absorbing exciton transition was maintained. These findings shed light on the diverse effects the application of force has on the absorbing and emitting exciton transitions in MHP NCs, which are important for their application as excitonic light emitters in high-pressure environments.

3.
Nanomaterials (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334533

RESUMO

The narrowband Internet-of-Things (NB-IoT) has been developed to provide low-power, wide-area IoT applications. The efficiency of a power amplifier (PA) in a transmitter is crucial for a longer battery lifetime, satisfying the requirements for output power and linearity. In addition, the design of an internal complementary metal-oxide semiconductor (CMOS) PA is typically required when considering commercial applications to include the operation of an optional external PA. This paper presents a dual-mode CMOS PA with an external PA driver for NB-IoT applications. The proposed PA supports an external PA mode without degrading the performances of output power, linearity, and stability. In the operation of an external PA mode, the PA provides a sufficient gain to drive an external PA. A parallel-combined transistor method is adopted for a dual-mode operation and a third-order intermodulation distortion (IMD3) cancellation. The proposed CMOS PA with an external PA driver was implemented using 40 nm-CMOS technology. The PA achieves a gain of 20.4 dB, a saturated output power of 28.8 dBm, and a power-added efficiency (PAE) of 57.8% in high-power (HP) mode at 920 MHz. With an NB-IoT signal (200 kHz π/4-differential quadrature phase shift keying (DQPSK)), the proposed PA achieves 24.2 dBm output power (Pout) with a 31.0% PAE, while satisfying -45 dBc adjacent channel leakage ratio (ACLR). More than 80% of the current consumption at 12 dBm Pout could be saved compared to that in HP mode when the proposed PA operates in low-power (LP) mode. The implemented dual-mode CMOS PA provides high linear output power with high efficiency, while supporting an external PA mode. The proposed PA is a good candidate for NB-IoT applications.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38019055

RESUMO

A defect-passivated photosensor based on cesium lead bromide (CsPbBr3) perovskite quantum dots (QD) was fabricated using parylene films, and the photosensor was applied for the microbial detection. The CsPbBr3 perovskite QDs were synthesized to be homogeneous in size under thermodynamic control, and the perovskite QD-based photosensor was fabricated using MoS2 flakes as the electron transfer layer. In this work, a parylene film with functional groups was deposited on a photosensor for physical protection (waterproof) and defect (halide vacancy) passivation of the perovskite QD. As the first effect of the parylene film, the physical protection of the perovskite QD from water was estimated by comparing the photosensor performance after incubation in water. As the second effect of the parylene, the interaction between the functional groups of the parylene film and the halide vacancies of the perovskite QDs was investigated through the bandgap, crystal structure, and trap-state density analysis. Additionally, density functional theory analysis on Mulliken charges, lattice parameters, and Gibbs free energy demonstrated the effect of the defect passivation by parylene films. Finally, the parylene-passivated QD-based photosensor was applied to the detection of two kinds of food-poisoning and gastroduodenal disease bacteria (Listeria monocytogenes and Helicobacter pylori).

5.
Biosens Bioelectron ; 242: 115739, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37826880

RESUMO

Wearable devices that can mechanically conform to human skin are a necessity for reliable monitoring and decoding of biomechanical activities through skin. Most inorganic piezoelectrics, however, lack deformability and damage tolerance, impeding stable motion monitoring. Here, we present an air-permeable fabric-based ZnO nanogenerator with mechanical adaptivity to diverse deformations for wearable piezoelectric sensors, collecting biomechanical health data. We fabricate ZnO nanorods incorporated throughout the entire nylon fabric, with a strategically positioned neutral mechanical plane, for bending-sensitive electronics (2.59 µA mm). Its hierarchically interlocked geometry also permits sensitive tactile sensing (0.15 nA kPa-1). Various physiological information about activities, including pulse beating, breathing, saliva swallowing, and coughing, is attained using skin-mounted sensors. Further, the pyroelectric sensing capability of a mask-attached device is demonstrated by identifying specific respiratory patterns. Our wearable healthcare sensors hold great promise for real-time monitoring of health-related vital signs, informing individuals' health status without disrupting their daily lives.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Óxido de Zinco , Humanos , Pele , Movimento (Física)
6.
J Chem Phys ; 159(5)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37530110

RESUMO

In this work, we investigated the effect of hole transporting poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) interfacing with Mn-doped CdS/ZnS quantum dots (QDs) deposited on an indium tin oxide (ITO) substrate on the photoemission of upconverted hot electrons under weak continuous wave photoexcitation in a vacuum. Among the various factors that can influence the photoemission of the upconverted hot electrons, we studied the role of PEDOT:PSS in facilitating the hole transfer from QDs and altering the energy of photoemitted hot electrons. Compared to hot electrons emitted from QDs deposited directly on the ITO substrate, the addition of the PEDOT:PSS layer between the QD and ITO layers increased the energy of the photoemitted hot electrons. The increased energy of the photoemitted hot electrons is attributed in part to the reduced steady-state positive charge on the QDs under continuous photoexcitation, which reduces the energy required to eject the electron from the conduction band.

7.
J Am Chem Soc ; 145(30): 16862-16871, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471618

RESUMO

Despite the versatility of semiconductor nanocrystals (NCs) in photoinduced chemical processes, the generation of stable radicals has been more challenging due to reverse charge transfer or charge recombination even in the presence of sacrificial charge acceptors. Here, we show that cesium lead halide (CsPbX3) NCs can selectively photogenerate either aminium or aminyl radicals from amines, taking advantage of the controllable imbalance of the electron and hole populations achieved by varying the solvent composition. Using dihalomethane as the solvent, irreversible removal of the electrons from CsPbX3 NCs enabled by the photoinduced halide exchange between the NCs and the dihalomethane resulted in efficient oxidative generation of the aminium radical. In the absence of dihalomethane in solvent, the availability of both electrons and holes resulted in the production of an aminyl radical via sequential hole transfer and reductive N-H bond dissociation. The negative charge of the halide ions on the NC's lattice surface appears to facilitate the aminyl radical production, competing favorably with the reversible charge transfer reverting to the reactant.

8.
ACS Nano ; 16(11): 18284-18297, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36265010

RESUMO

Nanostructures─coupled with mass spectrometry─have been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules in laser desorption/ionization mass spectrometry (LDI-MS). However, the impact of laser-induced shock wave on the ionization of the nanostructures has rarely been reported. Herein, we systematically elucidate the laser shock wave effect on the ionization in terms of the in situ development of atomic defects and piezoelectricity in two-dimensional graphitic carbon nitride nanosheets (g-C3N4 NS) by short laser pulses. The mass analysis results of immunosuppressive drugs verify the enhanced LDI-MS performance, structurally originating from anisotropic lattice distortions in g-C3N4 NS, i.e., in-plane extension (contraction) and out-of-plane contraction (extension) that modulate the charge carrier motion. Along with the experimental investigations, density functional theory calculations on Mulliken charges and dipole moments demonstrate the contribution of defect and piezoelectricity to the ionization. The results of this study provide a mechanistic understanding of the underlying ionization processes, which is crucial for revealing the full potential of laser shock waves in LDI-MS.


Assuntos
Grafite , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Reprodutibilidade dos Testes , Grafite/química , Lasers
9.
Biochip J ; 16(3): 334-341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909466

RESUMO

One-step homogeneous immunoassay was developed for detecting influenza viruses A and B (Inf-A and Inf-B) using the switching peptide H2. As the fluorescence-labeled switching peptide dissociated from the binding pocket of detection antibodies, the fluorescence signal could be directly generated by the binding of Inf-A and Inf-B without washing (i.e., one-step immunoassay). For the one-step homogeneous immunoassay with detection antibodies in solution, graphene was labeled with the antibodies as a fluorescence quencher. To test the feasibility of the homogeneous one-step immunoassay, the stability of the antibody complex with the switching peptide was evaluated under different pH and salt conditions. The one-step homogeneous immunoassay with switching peptide was conducted using influenza virus antigens in phosphate-buffered saline and real samples with inactivated Inf-A and Inf-B spiked in serum. Finally, the one-step homogeneous immunoassay results were compared with those of commercially available lateral flow immunoassays.

10.
Nano Lett ; 22(16): 6753-6759, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35939549

RESUMO

Hot electrons play a crucial role in enhancing the efficiency of photon-to-current conversion or photocatalytic reactions. In semiconductor nanocrystals, energetic hot electrons capable of photoemission can be generated via the upconversion process involving the dopant-originated intermediate state, currently known only in Mn-doped cadmium chalcogenide quantum dots. Here, we report that Mn-doped CsPbBr3 nanocrystals are an excellent platform for generating hot electrons via upconversion that can benefit from various desirable exciton properties and the structural diversity of metal halide perovskites (MHPs). Two-dimensional Mn-doped CsPbBr3 nanoplatelets are particularly advantageous for hot electron upconversion due to the strong exciton-dopant interaction mediating the upconversion process. Furthermore, nanoplatelets reveal evidence for the hot electron upconversion via long-lived dark excitons in addition to bright excitons that may enhance the upconversion efficiency. This study establishes the feasibility of hot electron upconversion in MHP hosts and demonstrates the potential merits of two-dimensional MHP nanocrystals in the upconversion process.

11.
Nano Lett ; 22(13): 5120-5126, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35759697

RESUMO

Circularly polarized optical excitation of plasmonic nanostructures causes coherent circulating motion of their electrons, which in turn gives rise to strong optically induced magnetization, a phenomenon known as the inverse Faraday effect (IFE). In this study we report how the IFE also significantly decreases plasmon damping. By modulating the optical polarization state incident on achiral plasmonic nanostructures from linear to circular, we observe reversible increases of reflectance by up to 8% and simultaneous increases of optical field concentration by 35.7% under 109 W/m2 continuous wave (CW) optical excitation. These signatures of decreased plasmon damping were also monitored in the presence of an external magnetic field (0.2 T). We rationalize the observed decreases in plasmon damping in terms of the Lorentz forces acting on the circulating electron trajectories. Our results outline strategies for actively modulating intrinsic losses in the metal via optomagnetic effects encoded in the polarization state of incident light.


Assuntos
Nanoestruturas , Ressonância de Plasmônio de Superfície , Elétrons , Campos Magnéticos , Metais , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos
12.
Nano Lett ; 21(22): 9543-9550, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762431

RESUMO

We investigated the magnetic effect of Mn2+ ions on an exciton of Mn-doped CsPbI3 quantum dots (QDs), where we looked for the signatures of an exciton magnetic polaron known to produce a large effective magnetic field in Mn-doped CdSe QDs. In contrast to Mn-doped CdSe QDs that can produce ∼100 T of magnetic field upon photoexcitation, manifested as a large change in the energy and relaxation dynamics of a bright exciton, Mn-doped CsPbI3 QDs exhibited little influence of a magnetic dopant on the behavior of a bright exciton. However, a µs-lived dark exciton in CsPbI3 QDs showed 40% faster decay in the presence of Mn2+, equivalent to the effect of ∼3 T of an external magnetic field. While further study is necessary to fully understand the origin of the large difference in the magneto-optic property of an exciton in two systems, we consider that the difference in antiferromagnetic coupling of the dopants is an important contributing factor.


Assuntos
Pontos Quânticos , Fenômenos Magnéticos , Magnetismo , Fenômenos Físicos , Compostos de Zinco
13.
Materials (Basel) ; 14(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300970

RESUMO

The purpose of this study was to evaluate the structural performance of composite deck slabs containing macro-synthetic fibers. after a fire by proposing a deflection estimation method for non-fireproof structural decks. Therefore, this study evaluated the fire resistance performance and deflection of deck slabs mixed with macro-synthetic fibers. Afterward, the deflection estimation method considering the thermal characteristics of concrete and deck plates was proposed. A material test was first conducted to evaluate the mechanical properties of concrete mixed with macro-synthetic fibers. This test found that the compressive strength and elasticity modulus of concrete mixed with macro-synthetic fibers was greater than that of general concrete. A flexural tensile test confirmed that residual strength was maintained after the maximum strength was achieved. The fire resistance of the deck slab was adequate even when a fire-resistant coating was not applied. The internal temperature was lowest for the specimen with macro-synthetic fibers. Deflection was evaluated using previously published equations and standards. The deflection evaluation confirmed that the temperature distribution should be applied differently in the estimation method that uses the thermal load of the deck slab.

14.
J Am Chem Soc ; 143(27): 10292-10300, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34191502

RESUMO

Energetic hot electrons generated in Mn-doped quantum dots (QDs) via exciton-to-hot-electron upconversion possess long-range transfer capability. The long-range hot electron transfer allowed for superior efficiency in various photocatalytic reduction reactions compared to conventional QDs, which solely rely on the transfer of band edge electrons. Here we show that the synergistic action of the interfacial hole transfer to the initial reactant and subsequent long-range hot electron transfer to an intermediate species enables highly efficient redox-neutral photocatalytic reactions, thereby extending the benefits of Mn-doped QDs beyond reduction reactions. The photocatalytic conversion of formate (HCOO-) to carbon monoxide (CO), which is an important route to obtain a key component of syngas from an abundant source, is an exemplary redox-neutral reaction that exhibits a drastic enhancement of catalytic efficiency by Mn-doped QDs. Mn-doped QDs increased the formate to CO conversion rate by 2 orders of magnitude compared to conventional QDs with high selectivity. Spectroscopic study of charge transfer processes and the computational study of reaction intermediates revealed the critical role of long-range hot electron transfer to an intermediate species lacking binding affinity to the QD surface for efficient CO production. Specifically, we find that the formate radical (HCOO)•, formed after the initial hole transfer from the QD to HCOO-, undergoes isomerization to the (HOCO)• radical that subsequently is reduced to yield CO and OH-. Long-range hot electron transfer is particularly effective for reducing the nonbinding (HOCO)• radical, resulting in the large enhancement of CO production by overcoming the limitation of interfacial electron transfer.

15.
ACS Nano ; 15(7): 10775-10981, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34137264

RESUMO

Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.

16.
ACS Appl Mater Interfaces ; 13(25): 29392-29405, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34137577

RESUMO

Chemiluminescence immunoassays have been widely employed for diagnosing various diseases. However, because of the extremely low intensity chemiluminescence signals, highly sensitive transducers, such as photomultiplier tubes and image sensors with cooling devices, are required to overcome this drawback. In this study, a hypersensitive photosensor was developed based on cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs) with sufficient high sensitivity for chemiluminescence immunoassays. First, CsPbBr3 QDs with a highly uniform size, that is, 5 nm, were synthesized under thermodynamic control to achieve a high size confinement effect. For the fabrication of the photosensor, MoS2 nanoflakes were used as an electron transfer layer and heat-treated at an optimum temperature. Additionally, a parylene-C film was used as a passivation layer to improve the physical stability and sensitivity of the photosensor. In particular, the trap states on the CsPbBr3 QDs were reduced by the passivation layer, and the sensitivity was increased. Finally, a photosensor based on CsPbBr3 QDs was employed in chemiluminescence immunoassays for the detection of human hepatitis B surface antigen, human immunodeficiency virus antibody, and alpha-fetoprotein (AFP, a cancer biomarker). When compared with the conventionally used equipment, the photosensor was determined to be feasible for application in chemiluminescence immunoassays.


Assuntos
Compostos de Cálcio/química , Imunoensaio/métodos , Chumbo/química , Medições Luminescentes/métodos , Óxidos/química , Pontos Quânticos/química , Titânio/química , Césio/química , Anticorpos Anti-HIV/análise , Antígenos de Superfície da Hepatite B/análise , Humanos , Polímeros/química , Xilenos/química
17.
Acc Chem Res ; 54(6): 1399-1408, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33566565

RESUMO

ConspectusSemiconducting metal halide perovskite (MHP) nanocrystals have emerged as an important new class of materials as the source of photons and charges for various applications that can outperform many other semiconductor nanocrystals utilized for the same purposes. However, the majority of the studies of MHP nanocrystals focused on weakly or nonconfined systems, where the quantum confinement giving rise to various size-dependent and confinement-enhanced photophysical properties cannot be explored readily. This was partially due to the challenge in producing strongly quantum-confined MHP nanocrystals, since the traditional kinetic control approach was less effective for the size control. Recent synthetic progress in MHP nanocrystals utilizing the equilibrium-based size control achieved the precise control of quantum confinement with high ensemble uniformity, enabling the exploration of the unique properties of MHP nanocrystals under strong quantum confinement. In this Account, we review the recent progress made in the synthesis of strongly quantum-confined cesium lead halide nanocrystals and investigation of the properties of exciton modified by strong quantum confinement. The main body of this Account discusses the key results of the research in this field in two separate sections. Section 2 describes the thermodynamic equilibrium-based synthesis method to control the size of cesium lead halide perovskite quantum dots in strongly confined regime. Size control in anisotropic nanocrystals with one- and two-dimensional quantum confinement is also discussed. Section 3 covers the following three topics that highlight the effects of quantum confinement on various spectroscopic properties of excitons in cesium lead halide perovskite nanocrystals: (1) Size-dependent absorption cross section of cesium lead halide quantum dots; (2) confinement effect on exciton fine structure and access to the dark exciton exhibiting intense and long-lived photoluminescence; (3) activation of forbidden exciton transition via dynamic lattice distortion by the photoexcited charge carriers enhanced by quantum confinement. The impact of strong quantum confinement goes beyond the properties of excitons covered in this Account and is expected to expand the functionality of MHP nanocrystals as the source of photons and charges. For instance, realization of the possible enhancement of photon down- and upconversion and hot carrier generation via quantum confinement will further increase the usefulness of strongly confined MHP nanocrystals in their applications.

18.
J Chem Phys ; 153(18): 184703, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187409

RESUMO

The fine structure of the band edge exciton and the dark exciton photoluminescence (PL) are topics of significant interest in the research of semiconducting metal halide perovskite nanocrystals, with several conflicting reports on the level ordering of the bright and dark states and the accessibility of the emitting dark states. Recently, we observed the intense dark exciton PL in strongly confined CsPbBr3 nanocrystals at cryogenic temperatures, in contrast to weakly confined nanocrystals lacking dark exciton PL, which was explained by the confinement enhanced bright-dark exciton splitting. In this work, we investigated the size-dependence of the dark exciton photoluminescence properties in CsPbBr3 and CsPbI3 quantum dots in the strongly confined regime, showing the clear role of confinement in determining the bright-dark energy splitting (ΔEBD) and the dark exciton lifetime (τD). We observe the increase in both ΔEBD and τD with increasing quantum confinement in CsPbBr3 and CsPbI3 QDs, consistent with the earlier predictions on the size-dependence of ΔEBD and τD. Our results show that quantum confinement plays a crucial role in determining the accessibility to the dark exciton PL and its characteristics in metal halide perovskite nanocrystals.

19.
Nano Lett ; 20(10): 7321-7326, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32845638

RESUMO

Dark exciton as the lowest-energy (ground) exciton state in metal halide perovskite nanocrystals is a subject of much interest. This is because the superior performance of perovskites as the photon source combined with long lifetime of dark exciton can be attractive for many applications of exciton. However, the direct observation of the intense and long-lived dark exciton emission, indicating facile access to dark ground exciton state, has remained elusive. Here, we report the intense photoluminescence from dark exciton with microsecond lifetime in strongly confined CsPbBr3 nanocrystals and reveal the crucial role of confinement in accessing the dark ground exciton state. This study establishes the potential of strongly quantum-confined perovskite nanostructures as the excellent platform to harvest the benefits of extremely long-lived dark exciton.

20.
Nanoscale ; 12(24): 13113-13118, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32584332

RESUMO

Lead-halide perovskite nanocrystals (NCs) are receiving much attention as a potential high-quality source of photons due to their superior luminescence properties in comparison to other semiconductor NCs. To date, research has focused mostly on NCs with little or no quantum confinement. Here, we measured the size- and temperature-dependent photoluminescence (PL) from strongly confined CsPbBr3 quantum dots (QDs) with highly uniform size distributions, and examined the factors determining the evolution of the energy and linewidth of the PL with varying temperature and QD size. Compared to the extensively studied II-VI QDs, the spectral position of PL from CsPbBr3 QDs shows an opposite dependence on temperature, with weaker dependence overall. On the other hand, the PL linewidth is much more sensitive to the temperature and size of the QDs compared to II-VI QDs, indicating much stronger coupling of excitons to the vibrational degrees of freedom both in the lattice and at the surface of the QDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...